Алгебра

Квадрат суммы двух последовательных натуральных чисел больше суммы их квадратов на 612,найдите эти числа


<< Предыдущий вопрос Следующий вопрос >>

х - первое число

х+1 - второе число

 

(х+х+1)^2- (x^2+(x+1)^2)=612

(2x+1)^2-(x^2+x^2+2x+1)=612

4x^2+4x+1-2x^2-2x-1-612=0

2x^2+2x-612=0

x^2+x-306=0

по формуле дискриминанта находим корни

х1=-18 <0 не является решением ( по определению натурального числа)

Х2=17

Ответ. это числа 17 и 18 

как то так 

 

Загрузить файл
Сомневаешься в ответе?

Если сомневаешься в правильности ответа или его просто нет, то попробуй воспользоваться поиском на сайте и найти похожие вопросы по предмету Алгебра либо задай свой вопрос и получи ответ в течении нескольких минут.


Смотреть другие ответы